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a b s t r a c t

Based on Rumyantsev’s method, a procedure is developed for stabilizing stable and unstable equilibria
of dynamical systems by continuous and modulus-constrained control actions. It is shown that, when
modulus constraints are imposed on the controls, and when the quadratic-form coefficients are reduced
in modulus, the optimal stabilization, in terms of this method, approximates to time-optimal stabilization.
A solution is obtained of the problem of stabilizing unstable equilibrium positions at which the potential
energy of the system has neither a maximum nor a minimum (or, in particular, at which the potential
energy is identically equal to zero).
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Rumyantsev’s method1 enables us to achieve constructive stabilization of the stable steady motion of a system by additional forces,
when a certain functional characterizing the quality of the control is minimized. It has been shown2,3 that the stabilizing properties of
controls constructed by this method, with modulus constraints imposed on them, are retained for a certain class of controlled systems;
the area of controllability was estimated.

New methods for controlling non-linear mechanical systems4 guarantee (even under conditions of uncertainty) that the system is
brought to the origin of coordinates in a finite time with any form of perturbations, provided the modulus of the latter does not exceed
the admissible controls. However, under conditions of complete determinacy, to reduce the level of control actions, it is useful to take into
account not only the modulus of perturbations but also their signs.

When piecewise linear control algorithms with a step change in feedback factors are implemented,4 there are shock effects on the
system, and the phase trajectory during stabilization does not necessarily intersect the levels of the Lyapunov function, i.e., it cannot be
guaranteed that there will be no “overshoots” of the phase point from the initial region.

1. The stabilization of stable equilibria

Suppose that, for a dynamical system

(1.1)

in the region G ∈ Rn, the conditions of existence and uniqueness of the solutions are satisfied, and a positive-definite Lyapunov function V
is known such that its complete time derivative W, by virtue of system (1.1), is sign- negative or identically equal to zero.

Suppose that, to stabilize the steady motion, a control u ∈ Rr is introduced into system (1.1) such that it takes the form1

(1.2)

and optimal controls are found

(1.3)
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(�kj is the cofactor of the element ˇij) with the quality criterion

where K is a specified positive-definite quadratic form with symmetric coefficients, and F(x) is a non-negative function that is chosen
depending on the coefficients ˇij.1

It may turn out that, in region G, the controls found, u0
j
, cannot be realized on account of modulus constraints |uj| ≤ a. Then, in system

(1.2), we will change to new controls �j and, using a certain arbitrariness of choice of the coefficients ˇij, we will replace them with

The new optimal controls �0
j

will differ from the former controls u0
j

in that, infront of the ratio �kj/� there will be a factor a/b, i.e.,

�0
j

= (a/b)u0
j

are the new optimal controls.
Thus, the optimal control extends over the entire region G (by the double-sweep method). Here, by virtue of system (1.2), the total time

derivative of the Lyapunov function

on changing to new controls �0
j

(with W 0) decreases by a factor of a/b, i.e. stabilization is more sluggish. (Here and below it is assumed

that the manifold V̇ = 0 does not contain entire trajectories (1.2).)
The following question arises: is it impossible for modulus-constrained controls (perhaps, non-optimal controls in the entire region G)

to accelerate the motion of the phase point towards the equilibrium position?
We will return to the former controls uj with modulus constraints

In phase space we will fix the regions

and define the new controls

(1.4)

With control actions of this type, the right-hand sides of Eq. (1.2) are continuous in region G, and therefore, by virtue of Eq. (1.2), the time
derivative of the Lyapunov function is defined and continuous in this region G and has the form

(1.5)

As before, this derivative will be sign negative (even when W 0), and the manifold on which it may become zero remains the same
as in control without constraints. In fact, in the worst case (when W 0), the derivative V̇ vanishes only when all controls simultaneously
become zero.

In fact, if it is assumed that V̇ can become zero for certain uk �= 0 and the remainder uj = 0, j �= k, then the corresponding phase point (x1k,
. . ., xnk) lies either within the region Gk or outside Gk. In the latter case, V̇ has the same sign as V̇ by virtue of a system with optimal control,
i.e., the sign will be negative. In the former case, however, when the phase point lies within the region Gk, it will simultaneously lie within
the region G0∩

j
Gj and obey the optimal control. However, for the optimal control we have the expression

which vanishes only when all the controls simultaneously become zero.
It follows that, the lower the modulus of the coefficientsˇij chosen, the smaller will be the region G0, i.e., the control process approximates

to a discontinuous process reminiscent of time-optimal control.
To illustrate this, consider the problem5 of the fastest motion of the system to the origin of coordinates.

Such motion is ensured by the control
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Fig. 1.

for which the phase trajectories consist of arcs of circles with centres at the points (−1, 0), (1, 0), while the lines of the switching of controls
consist of arcs of circles of unit radius with centres on the axis x1: x1 = 1 ± 2k (k = 0, 1, 2, . . .) (Fig. 1).

Applying the method of stabilization1 to this system with the quality functional

and with the constraint |u| ≤ 1, outside the strip |x2| ≤ 2� we will obtain the same phase trajectories (arcs of circles), while within the strip
we will obtain pieces of Rumyantsev- optimal smooth phase trajectories (Fig. 2).

Such a combined control, inferior to time-optimal control, has an advantage in implementation inasmuch as, because of the drive time
lag, discontinuous controls cannot be realized accurately, and shock effects create large overloads in the controlled system.

2. Stabilization of unstable equilibria

Earlier work3 showed the possibility of stabilizing unstable equilibrium positions for a certain class of dynamical systems by controls
consisting of two components, one of which ensures the stability of these equilibria, and the other ensures optimal stabilization by
Rumyantsev’s method.1 It is obvious that, in this case also, the second control component can be assumed to be constrained in modulus.

The above-mentioned class of systems includes conservative systems with equilibrium positions at which the potential energy has a
maximum. Since the stabilization of unstable equilibrium positions at which the potential energy has neither a maximum nor a minimum
is of interest, we will consider this case.

Suppose the dynamical controlled system, written in the form of Lagrange’s equations (and, if there are cyclic coordinates, in the form
of Routh’s equations)

(2.1)

has the unstable equilibrium position

Fig. 2.
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and the quadratic part of the expansion of the potential energy� is not sign-definite, but its quadratic part

(2.2)

is positive-definite only for q1, q2, . . ., qk − 1.
We will define the function

(2.3)

in which the terms P0l(ql) are even non-negative functions and

Then the sum �+ P will be a positive-definite function in the vicinity of q = 0. Through the choice of functions P0l(ql), and, perhaps,
through a different choice of coefficients Plr to that made earlier, this vicinity D (a potential well) can be extended.

We will assume that

From the system of equations obtained, with det(Fij) �= 0, the controls wj, wj(0) = 0 are defined uniquely, apart from the choice of the
coefficients εl, which can be determined from the constraint |wj| ≤ bj when q ∈ D.

The function V = T +�+ P is a positive-definite Lyapunov function. Its total time derivative is zero, by virtue of the system controlled by
wj, and therefore, by controls �j, the optimal or combined stabilization of the equilibrium q = 0, q̇ = 0 can be realized.

Example. Consider a double pendulum. Suppose m1 and m2 are the masses of the pendulums, l1 and l2 are the lengths of the pendulums
and f1 and f2 are the angles of deflection of the pendulums from the vertical. The potential energy of the double pendulum has the form

The equilibrium position

is unstable. Putting ϕ2 = +�, we expand the function� in the neighbourhood of zero

Chossing

we obtain a matrix of the coefficients of the quadratic form U of the form diag(g1, εg2). Suppose w2 is the control moment applied to the
lower pendulum in the moving joint; then w1 − w2 is the control moment applied to the upper pendulum in the stationary joint. Now,
from system (2.2) we find

The same type of instability occurs for a point mass positioned at the collinear libration point L2. The point mass, being slightly displaced
from the point L2 perpendicular to the segment connecting the gravitating bodies, is attracted to the point L2, but, being displaced from
L2 along the segment, it moves away from point L2 as time passes. Thus, the conditions of stabilization considered above are satisfied.
This enables us, for example, to improve earlier results6 by changing from discontinuous controls retaining the centre of mass of a space-
craft in the vicinity of the photogravitational libration point L∗2, to continuous stabilization of the position of the centre of mass at this
point.
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3. The problem of minimizing energy consumption

We will consider in more detail the problem of minimizing the energy consumption when stabilizing the equilibrium of a system by
choosing the coefficients Plk occurring in the quadratic part of the function P(q).

Suppose for the moment that n = k. In the notation of the coefficients Plk, for convenience, the second subscript will be omitted (i.e.
Plk = Pl). We will require that the determinant

vanishes.
According to the rule for the expansion of a bordered determinant, we can write

where Aij is the cofactor of the element aij.
Requiring that the sum

be a minimum, and putting�= S − ��k, where � is the Lagrange multiplier, we will write the necessary conditions for an extremum of the
function�

This system of equations, at least at sufficiently small |�|, has a unique solution, and the quantities Pi are expressed rationally in terms
of �.

After substituting Pi into the equation�k = 0, an equation of degree 2k − 1 in � is obtained, and therefore at least one real solution exists.
The values of Pi which make the sum S a minimum are also determined from the solutions obtained.

In order for the determinant�k to remain positive, it is sufficient to add to the value of Pk found as low a value ε> 0 as desired.
If the dimension of the stabilized system n > k, then the procedure considered for reducing the quadratic form to a positive-definite form

must be repeated with the determinant�k + 1, etc., up to�n.
Thus, the procedure for the combined stabilization of the stable equilibria of dynamical systems, based on Rumyantsev’s method, is

extended to the stabilization of unstable equilibria.
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